
Tree-Adjoining Grammars: Theory and implementation

Day 1

Kata Balogh & Simon Petitjean
Heinrich-Heine-Universität Düsseldorf, Carl von Ossietzky Universität Oldenburg

NASSLLI 2025
June 23 – 27, 2025

University of Washington, Seattle

What this course is about

Language modeling with Tree-Adjoining Grammars

• language modeling → trying to implement syntactic theories

• implement1: general concepts→ mathematical objects
• implement2: paper & pencil→ electronic resource

• Why implementation? ⇒ day 3 part 2

As is frequently pointed out but cannot be overemphasized, an important goal of for-
malization in linguistics is to enable subsequent researchers to see the defects of an
analysis as clearly as its merits; only then can progress be made efficiently.

[Dowty 1979:322]

2

What this course is about

Language modeling with Tree-Adjoining Grammars

• language modeling → trying to implement syntactic theories

• implement1: general concepts→ mathematical objects
• implement2: paper & pencil→ electronic resource

• Why implementation? ⇒ day 3 part 2

As is frequently pointed out but cannot be overemphasized, an important goal of for-
malization in linguistics is to enable subsequent researchers to see the defects of an
analysis as clearly as its merits; only then can progress be made efficiently.

[Dowty 1979:322]

2

What this course is about

Language modeling with Tree-Adjoining Grammars

• language modeling → trying to implement syntactic theories

• implement1: general concepts→ mathematical objects
• implement2: paper & pencil→ electronic resource

• Why implementation? ⇒ day 3 part 2

As is frequently pointed out but cannot be overemphasized, an important goal of for-
malization in linguistics is to enable subsequent researchers to see the defects of an
analysis as clearly as its merits; only then can progress be made efficiently.

[Dowty 1979:322]

2

What this course is about

Language modeling with Tree-Adjoining Grammars

• language modeling → trying to implement syntactic theories

• implement1: general concepts→ mathematical objects
• implement2: paper & pencil→ electronic resource

• Why implementation? ⇒ day 3 part 2

As is frequently pointed out but cannot be overemphasized, an important goal of for-
malization in linguistics is to enable subsequent researchers to see the defects of an
analysis as clearly as its merits; only then can progress be made efficiently.

[Dowty 1979:322]

2

What this course is not about

Details of . . .

• formal language theory [Hopcroft, Motwani & Ullmann 2006]

(ESSLLI 2019 course: https://user.phil.hhu.de/balogh/esslli-2019-course/)

• parsing with mildly context-sensitive formalisms
(LCFRS, 2-MCFG, 2-ACG) [Kallmeyer 2010]

. . .However, this is highly relevant for motivating TAG!

• complexity of a language

⇒ determined by the weakest formal grammar that generates it

• expressive power of the formalism

⇒ TAG: The formalism is part of the theory, so let’s try to make it both conve-
nient and minimally expressive!

3

What this course is not about

Details of . . .

• formal language theory [Hopcroft, Motwani & Ullmann 2006]

(ESSLLI 2019 course: https://user.phil.hhu.de/balogh/esslli-2019-course/)

• parsing with mildly context-sensitive formalisms
(LCFRS, 2-MCFG, 2-ACG) [Kallmeyer 2010]

. . .However, this is highly relevant for motivating TAG!

• complexity of a language

⇒ determined by the weakest formal grammar that generates it

• expressive power of the formalism

⇒ TAG: The formalism is part of the theory, so let’s try to make it both conve-
nient and minimally expressive!

3

What this course is not about

Details of . . .

• formal language theory [Hopcroft, Motwani & Ullmann 2006]

(ESSLLI 2019 course: https://user.phil.hhu.de/balogh/esslli-2019-course/)

• parsing with mildly context-sensitive formalisms
(LCFRS, 2-MCFG, 2-ACG) [Kallmeyer 2010]

. . .However, this is highly relevant for motivating TAG!

• complexity of a language

⇒ determined by the weakest formal grammar that generates it

• expressive power of the formalism

⇒ TAG: The formalism is part of the theory, so let’s try to make it both conve-
nient and minimally expressive!

3

What this course is not about

Details of . . .

• formal language theory [Hopcroft, Motwani & Ullmann 2006]

(ESSLLI 2019 course: https://user.phil.hhu.de/balogh/esslli-2019-course/)

• parsing with mildly context-sensitive formalisms
(LCFRS, 2-MCFG, 2-ACG) [Kallmeyer 2010]

. . .However, this is highly relevant for motivating TAG!

• complexity of a language

⇒ determined by the weakest formal grammar that generates it

• expressive power of the formalism

⇒ TAG: The formalism is part of the theory, so let’s try to make it both conve-
nient and minimally expressive!

3

Schedule

Schedule

• Mon: motivation & basic (L)TAG
• Tue: linguistic applications and using (L)TAG: syntax
• Wed:

• linguistic applications and using (L)TAG: semantics
• introduction to grammar engineering and XMG

• Thu: grammar implementation with XMG
• Fri: parsing TAG

Lecturers

• lecturers:
• Kata Balogh (balogh@hhu.de)
• Simon Petitjean (simon.petitjean@uol.de)

• course page (QR code following):
• https://spetitjean.github.io/teaching/summer_schools_and_others/

tree_adjoining_grammars_theory_and_implementation_nasslli/

4

https://spetitjean.github.io/teaching/summer_schools_and_others/tree_adjoining_grammars_theory_and_implementation_nasslli/
https://spetitjean.github.io/teaching/summer_schools_and_others/tree_adjoining_grammars_theory_and_implementation_nasslli/

Schedule

Schedule

• Mon: motivation & basic (L)TAG
• Tue: linguistic applications and using (L)TAG: syntax
• Wed:

• linguistic applications and using (L)TAG: semantics
• introduction to grammar engineering and XMG

• Thu: grammar implementation with XMG
• Fri: parsing TAG

Lecturers

• lecturers:
• Kata Balogh (balogh@hhu.de)
• Simon Petitjean (simon.petitjean@uol.de)

• course page (QR code following):
• https://spetitjean.github.io/teaching/summer_schools_and_others/

tree_adjoining_grammars_theory_and_implementation_nasslli/

4

https://spetitjean.github.io/teaching/summer_schools_and_others/tree_adjoining_grammars_theory_and_implementation_nasslli/
https://spetitjean.github.io/teaching/summer_schools_and_others/tree_adjoining_grammars_theory_and_implementation_nasslli/

Schedule

Schedule

• Mon: motivation & basic (L)TAG
• Tue: linguistic applications and using (L)TAG: syntax
• Wed:

• linguistic applications and using (L)TAG: semantics
• introduction to grammar engineering and XMG

• Thu: grammar implementation with XMG
• Fri: parsing TAG

Lecturers

• lecturers:
• Kata Balogh (balogh@hhu.de)
• Simon Petitjean (simon.petitjean@uol.de)

• course page (QR code following):
• https://spetitjean.github.io/teaching/summer_schools_and_others/

tree_adjoining_grammars_theory_and_implementation_nasslli/

4

https://spetitjean.github.io/teaching/summer_schools_and_others/tree_adjoining_grammars_theory_and_implementation_nasslli/
https://spetitjean.github.io/teaching/summer_schools_and_others/tree_adjoining_grammars_theory_and_implementation_nasslli/

Schedule

5

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language
⇒ the general human language capacity
⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity→ to generate tree languages

• derivational generative capacity

6

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language

⇒ the general human language capacity
⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity→ to generate tree languages

• derivational generative capacity

6

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language
⇒ the general human language capacity

⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity→ to generate tree languages

• derivational generative capacity

6

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language
⇒ the general human language capacity
⇒ the adequacy of grammar formalisms

⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity→ to generate tree languages

• derivational generative capacity

6

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language
⇒ the general human language capacity
⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity→ to generate tree languages

• derivational generative capacity

6

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language
⇒ the general human language capacity
⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity→ to generate tree languages

• derivational generative capacity

6

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language
⇒ the general human language capacity
⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity→ to generate tree languages

• derivational generative capacity

6

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language
⇒ the general human language capacity
⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity → to generate tree languages

• derivational generative capacity

6

Why working with TAG? (in a nutshell)

• formal complexity of natural languages → gain insights into

⇒ the general structure of natural language
⇒ the general human language capacity
⇒ the adequacy of grammar formalisms
⇒ lower bound of the computational complexity of NLP tasks

Hypothesis of the adequacy of expressive power

TAG exactly provides the expressive power needed to treat NL.

Expressive power in terms of a specific generative capacity:

• weak generative capacity → to generate string languages

• strong generative capacity → to generate tree languages

• derivational generative capacity

6

Grammar Formalisms

Aim: find an adequate formal system for natural language analysis

• mathematically concise representation of a grammar theory
• a formal system for linguistic analyses

A formal grammar (N, T , S, R) is

• Type 0 or unrestricted (phrase structure) grammar iff every production is of the form
𝛼 → 𝛽 with 𝛼 ∈ (N ∪ T)∗ \ T ∗ and 𝛽 ∈ (N ∪ T)∗;
generates a recursively enumerable language (RE).

• Type 1 or context-sensitive grammar iff every production is of the form
𝛾A𝛿 → 𝛾𝛽𝛿 with 𝛾, 𝛿, 𝛽 ∈ (N ∪ T)∗,A ∈ N and 𝛽 ≠ 𝜖;

generates a context-sensitive language (CS).

• Type 2 or context-free grammar iff every production is of the form
A → 𝛽 with A ∈ N and 𝛽 ∈ (N ∪ T)∗ \ {𝜖};
generates a context-free language (CF).

• Type 3 or right-linear grammar iff every production is of the form
A → 𝛽B or A → 𝛽 with A,B ∈ N and 𝛽 ∈ T ∗ \ {𝜖};
generates a regular language (REG).

7

Grammar Formalisms

Aim: find an adequate formal system for natural language analysis

• mathematically concise representation of a grammar theory
• a formal system for linguistic analyses

A formal grammar (N, T , S, R) is

• Type 0 or unrestricted (phrase structure) grammar iff every production is of the form
𝛼 → 𝛽 with 𝛼 ∈ (N ∪ T)∗ \ T ∗ and 𝛽 ∈ (N ∪ T)∗;
generates a recursively enumerable language (RE).

• Type 1 or context-sensitive grammar iff every production is of the form
𝛾A𝛿 → 𝛾𝛽𝛿 with 𝛾, 𝛿, 𝛽 ∈ (N ∪ T)∗,A ∈ N and 𝛽 ≠ 𝜖;

generates a context-sensitive language (CS).

• Type 2 or context-free grammar iff every production is of the form
A → 𝛽 with A ∈ N and 𝛽 ∈ (N ∪ T)∗ \ {𝜖};
generates a context-free language (CF).

• Type 3 or right-linear grammar iff every production is of the form
A → 𝛽B or A → 𝛽 with A,B ∈ N and 𝛽 ∈ T ∗ \ {𝜖};
generates a regular language (REG). 7

Why working with TAG? Formal reasons

How much expressive power do we need to treat NL?
(FSA = finite state automaton, PDA = push-down automaton, EPDA = embedded push-down automaton, LBA = linear

bounded automaton, TG = transformational grammar, TM = Turing Machine)

HPSG, TG, TM a f (n)

LFG, LBA a2
n
, anbncn. . . ,W k

CFG, PDA anbmcmdn,WWR

FSA anbmckd l

type 3: regular

type 2: context-free

type 1: context-sensitive

type 0: recursively enumerable
Chomsky(-Schützenberger) hierarchy
[Chomsky-Schuetzenberger 1963]

8

Why working with TAG? Formal reasons

How much expressive power do we need to treat NL?
(FSA = finite state automaton, PDA = push-down automaton, EPDA = embedded push-down automaton, LBA = linear

bounded automaton, TG = transformational grammar, TM = Turing Machine)

HPSG, TG, TM a f (n)

LFG, LBA a2
n
, anbncn. . . ,W k

CFG, PDA anbmcmdn,WWR

FSA anbmckd l

type 3: regular

type 2: context-free

type 1: context-sensitive

type 0: recursively enumerable
Chomsky(-Schützenberger) hierarchy
[Chomsky-Schuetzenberger 1963]

NL is not regular! [Chomsky 1956, 1957]

center embedding with relative clauses

n1 n2 n3 v3 v2 v1

8

Why working with TAG? Formal reasons

How much expressive power do we need to treat NL?
(FSA = finite state automaton, PDA = push-down automaton, EPDA = embedded push-down automaton, LBA = linear

bounded automaton, TG = transformational grammar, TM = Turing Machine)

HPSG, TG, TM a f (n)

LFG, LBA a2
n
, anbncn. . . ,W k

CFG, PDA anbmcmdn,WWR

FSA anbmckd l

type 3: regular

type 2: context-free

type 1: context-sensitive

type 0: recursively enumerable
Chomsky(-Schützenberger) hierarchy
[Chomsky-Schuetzenberger 1963]

NL is not context-free! [Shieber 1985]
cross serial dependencies in Dutch and
Swiss-German
n1 n2 n3 v1 v2 v3

8

Why working with TAG? Formal reasons

How much expressive power do we need to treat NL?
(FSA = finite state automaton, PDA = push-down automaton, EPDA = embedded push-down automaton, LBA = linear

bounded automaton, TG = transformational grammar, TM = Turing Machine)

HPSG, TG, TM a f (n)

LFG, LBA a2
n
, anbncn. . . ,W k

CFG, PDA anbmcmdn,WWR

FSA anbmckd l

type 3: regular

type 2: context-free

type 1: context-sensitive

type 0: recursively enumerable
Chomsky(-Schützenberger) hierarchy
[Chomsky-Schuetzenberger 1963]

Is NL context-sensitive?

8

Why working with TAG? Formal reasons

How much expressive power do we need to treat NL?
(FSA = finite state automaton, PDA = push-down automaton, EPDA = embedded push-down automaton, LBA = linear

bounded automaton, TG = transformational grammar, TM = Turing Machine)

HPSG, TG, TM af (n)

LFG, LBA a2
n
, anbncn. . . ,W k

TAG, EPDA anbmcndm,WW

CFG, PDA anbmcmdn,WWR

FSA anbmckd l

type 3: regular

type 2: context-free

type 1: context-sensitive

mildly context-sensitive

type 0: recursively enumerable
Chomsky(-Schützenberger) hierarchy
[Chomsky-Schuetzenberger 1963]

NL is mildly context-sensitive
[Joshi 1985]

• ⊃ CFL
• cross-serial dep.
• semi-linear
• in PTIME

8

Chomsky-hierarchy: overview

Languages as problems:
“Can we decide for every word whether it belongs to L?”

type grammar rules word problem

RE phrase structure 𝛼 → 𝛽 undecidable

CS context-sensitive 𝛾A𝛿 → 𝛾𝛽𝛿 exponential

CF context-free A → 𝛽 cubic

REG right-linear A → aB|b linear

For Type 1-3 languages a rule S → 𝜖 is allowed if S does not occur in any rule’s right-hand side.

9

Mild context sensitivity

• for natural languages context-free grammars are just not ‘enough’

• expressivity challenge: cannot describe all NL phenomena
• cross-serial dependencies (anbmcndm); Schwyzerdütsch
• duplication (yy); Bambara (spoken in Mali)
• multiple agreement (anbncn); Bantu languages

• low descriptive power: problems with certain linguistic phenomena
e.g. subcategorization, number agreement, case marking

• only weak-lexicalization possible

• natural languages are almost context-free

mildly context sensitive languages

RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE
[Joshi, 1985]

• for natural languages we need grammars, that are somewhat richer than
context-free grammars, but more restricted than context-sensitive gram-
mars

10

Mild context sensitivity

• for natural languages context-free grammars are just not ‘enough’
• expressivity challenge: cannot describe all NL phenomena

• cross-serial dependencies (anbmcndm); Schwyzerdütsch
• duplication (yy); Bambara (spoken in Mali)
• multiple agreement (anbncn); Bantu languages

• low descriptive power: problems with certain linguistic phenomena
e.g. subcategorization, number agreement, case marking

• only weak-lexicalization possible

• natural languages are almost context-free

mildly context sensitive languages

RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE
[Joshi, 1985]

• for natural languages we need grammars, that are somewhat richer than
context-free grammars, but more restricted than context-sensitive gram-
mars

10

Mild context sensitivity

• for natural languages context-free grammars are just not ‘enough’
• expressivity challenge: cannot describe all NL phenomena

• cross-serial dependencies (anbmcndm); Schwyzerdütsch
• duplication (yy); Bambara (spoken in Mali)
• multiple agreement (anbncn); Bantu languages

• low descriptive power: problems with certain linguistic phenomena
e.g. subcategorization, number agreement, case marking

• only weak-lexicalization possible

• natural languages are almost context-free

mildly context sensitive languages

RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE
[Joshi, 1985]

• for natural languages we need grammars, that are somewhat richer than
context-free grammars, but more restricted than context-sensitive gram-
mars

10

Mild context sensitivity

• for natural languages context-free grammars are just not ‘enough’
• expressivity challenge: cannot describe all NL phenomena

• cross-serial dependencies (anbmcndm); Schwyzerdütsch
• duplication (yy); Bambara (spoken in Mali)
• multiple agreement (anbncn); Bantu languages

• low descriptive power: problems with certain linguistic phenomena
e.g. subcategorization, number agreement, case marking

• only weak-lexicalization possible

• natural languages are almost context-free

mildly context sensitive languages

RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE
[Joshi, 1985]

• for natural languages we need grammars, that are somewhat richer than
context-free grammars, but more restricted than context-sensitive gram-
mars

10

Mild context sensitivity

• for natural languages context-free grammars are just not ‘enough’
• expressivity challenge: cannot describe all NL phenomena

• cross-serial dependencies (anbmcndm); Schwyzerdütsch
• duplication (yy); Bambara (spoken in Mali)
• multiple agreement (anbncn); Bantu languages

• low descriptive power: problems with certain linguistic phenomena
e.g. subcategorization, number agreement, case marking

• only weak-lexicalization possible

• natural languages are almost context-free

mildly context sensitive languages

RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE
[Joshi, 1985]

• for natural languages we need grammars, that are somewhat richer than
context-free grammars, but more restricted than context-sensitive gram-
mars

10

Mild context sensitivity

• for natural languages context-free grammars are just not ‘enough’
• expressivity challenge: cannot describe all NL phenomena

• cross-serial dependencies (anbmcndm); Schwyzerdütsch
• duplication (yy); Bambara (spoken in Mali)
• multiple agreement (anbncn); Bantu languages

• low descriptive power: problems with certain linguistic phenomena
e.g. subcategorization, number agreement, case marking

• only weak-lexicalization possible

• natural languages are almost context-free

mildly context sensitive languages

RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE
[Joshi, 1985]

• for natural languages we need grammars, that are somewhat richer than
context-free grammars, but more restricted than context-sensitive gram-
mars

10

Mild context sensitivity

• for natural languages context-free grammars are just not ‘enough’
• expressivity challenge: cannot describe all NL phenomena

• cross-serial dependencies (anbmcndm); Schwyzerdütsch
• duplication (yy); Bambara (spoken in Mali)
• multiple agreement (anbncn); Bantu languages

• low descriptive power: problems with certain linguistic phenomena
e.g. subcategorization, number agreement, case marking

• only weak-lexicalization possible

• natural languages are almost context-free

mildly context sensitive languages

RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE
[Joshi, 1985]

• for natural languages we need grammars, that are somewhat richer than
context-free grammars, but more restricted than context-sensitive gram-
mars

10

Mildl context sensitivity

• Joshi (1985): characterize the amount of context-sensitivity needed for NL

• mildly context sensitive formalisms are such that they

• generate at least all CFs
• can describe a limited amount of cross-serial dependencies
(there is an n ≥ 2 up to which the formalism can generate all string languages
{wn |w ∈ Σ∗})

• are polynomially parsable
• their string languages are of constant growth
(the length of the words generated by the grammar grows in a linear way)

11

Limits of CFG: expressivity challenge

• German: nested dependency (subordinate clauses)

(1) Jan
John

sagte
said

daß
that

er
he

die
the

Kinder
children

dem
the

Hans
Hans

das
the

Haus
house

streichen
paint

helfen
help

ließ.
let.

‘John said that he let the children to help Hans to paint the house.’

n1 n2 n3 v3 v2 v1

• Schwyzerdütsch: cross-serial dependency

(2) Jan
John

säit
said

das
that

mer
we

d’chind
children.acc

em
the

Hans
Hans.dat

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

‘John said that we let the children to help Hans to paint the house.’

n1 n2 n3 v1 v2 v3

(3) *mer
we

d’chind
children.acc

de
the

Hans
Hans.acc

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

12

Limits of CFG: expressivity challenge

• German: nested dependency (subordinate clauses)

(1) Jan
John

sagte
said

daß
that

er
he

die
the

Kinder
children

dem
the

Hans
Hans

das
the

Haus
house

streichen
paint

helfen
help

ließ.
let.

‘John said that he let the children to help Hans to paint the house.’

n1 n2 n3 v3 v2 v1

• Schwyzerdütsch: cross-serial dependency

(2) Jan
John

säit
said

das
that

mer
we

d’chind
children.acc

em
the

Hans
Hans.dat

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

‘John said that we let the children to help Hans to paint the house.’

n1 n2 n3 v1 v2 v3

(3) *mer
we

d’chind
children.acc

de
the

Hans
Hans.acc

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

12

Limits of CFG: expressivity challenge

Proof by Shieber [Shieber 1985: 334-337]

• series of NPs followed by series of Vs
• raising verb can occur in between
Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.

(4) ...
...
mer
we

d’chind
children.acc

em
the

Hans
Hans.dat

es
the

huus
house.acc

haend
have

wele
wanted

lönd
let

hälfe
help

aastriiche.
paint.

‘... that we have wanted to let the children to help Hans to paint the house.’

• Jan säit das mer NP* es huus haend wele VP* aastriiche
• homomorphism f :

f (d’chind) = a f (em Hans) = b f (lönd) = c f (hälfe) = d
f (Jan säit das mer) = w f (es huus haend wele) = x f (aastriiche) = y f (s) = z otherwise

• f (Schwyzerdütsch) ∩ wa∗b∗xc∗d∗y = wambnxcmdny
• CFLs are closed under intersection with regular languages: L1CF ∩ L2REG = L3CF
• wa∗b∗xc∗d∗y is regular
• by Pumping Lemma: wambnxcmdny is not context-free

• ⇒ Schwyzerdütsch is not context-free 13

Limits of CFG: low descriptive power

Take a simple CFG

• string rewriting
• replace non-terminals by strings of terminals and non-terminals

GCFG = ⟨N, T , S, P⟩
P = { S→ NP VP, VP → V NP | V, V→ likes | like | sleeps, NP→ she | her | they }

Example derivations:

S→ NP VP → she VP→ she V → she sleeps

S→ NP VP → they VP→ they V NP→ they like NP → they like her

Example derivation history:

S

VP

sleeps

NP

she

S

VP

NP

her

V

like

NP

they

14

Limits of CFG: low descriptive power

Take a simple CFG

• string rewriting
• replace non-terminals by strings of terminals and non-terminals

GCFG = ⟨N, T , S, P⟩
P = { S→ NP VP, VP → V NP | V, V → likes | like | sleeps, NP → she | her | they }

Example derivations:

S→ NP VP → she VP→ she V → she sleeps

S→ NP VP → they VP→ they V NP→ they like NP → they like her

Example derivation history:

S

VP

sleeps

NP

she

S

VP

NP

her

V

like

NP

they

14

Limits of CFG: low descriptive power

Take a simple CFG

• string rewriting
• replace non-terminals by strings of terminals and non-terminals

GCFG = ⟨N, T , S, P⟩
P = { S→ NP VP, VP → V NP | V, V → likes | like | sleeps, NP → she | her | they }

Example derivations:

S→ NP VP → she VP→ she V → she sleeps

S→ NP VP → they VP→ they V NP→ they like NP → they like her

Example derivation history:

S

VP

sleeps

NP

she

S

VP

NP

her

V

like

NP

they

14

Limits of CFG: low descriptive power

Take a simple CFG

• string rewriting
• replace non-terminals by strings of terminals and non-terminals

GCFG = ⟨N, T , S, P⟩
P = { S→ NP VP, VP → V NP | V, V → likes | like | sleeps, NP → she | her | they }

Example derivations:

S→ NP VP → she VP→ she V → she sleeps

S→ NP VP → they VP→ they V NP→ they like NP → they like her

Example derivation history: S

VP

sleeps

NP

she

S

VP

NP

her

V

like

NP

they

14

Limits of CFG: low descriptive power

Take a simple CFG

• string rewriting
• replace non-terminals by strings of terminals and non-terminals

GCFG = ⟨N, T , S, P⟩
P = { S→ NP VP, VP → V NP | V, V → likes | like | sleeps, NP → she | her | they }

Example derivations:

S→ NP VP → she VP→ she V → she sleeps

S→ NP VP → they VP→ they V NP→ they like NP → they like her

Example derivation history: S

VP

sleeps

NP

she

S

VP

NP

her

V

like

NP

they

14

Limits of CFG: low descriptive power

• subcategorization / argument selection

(1) She sleeps. / She likes her. / *She likes.
S⇒ NP VP⇒ Joe VP ⇒ Joe V⇒ Joe sleeps
S⇒ NP VP⇒ Joe VP ⇒ Joe V⇒ Joe likes

• number agreement

(2) They like her. / *They likes her.

• case marking

(3) She likes her. / *She likes they.

• encode necessary information in the non-terminals?

15

Limits of CFG: low descriptive power

• subcategorization / argument selection

(1) She sleeps. / She likes her. / *She likes.
S⇒ NP VP⇒ Joe VP ⇒ Joe V ⇒ Joe sleeps
S⇒ NP VP⇒ Joe VP ⇒ Joe V ⇒ Joe likes

• number agreement

(2) They like her. / *They likes her.

• case marking

(3) She likes her. / *She likes they.

• encode necessary information in the non-terminals?

15

Limits of CFG: low descriptive power

• subcategorization / argument selection

(1) She sleeps. / She likes her. / *She likes.
S⇒ NP VP⇒ Joe VP ⇒ Joe V ⇒ Joe sleeps
S⇒ NP VP⇒ Joe VP ⇒ Joe V ⇒ Joe likes

• number agreement

(2) They like her. / *They likes her.

• case marking

(3) She likes her. / *She likes they.

• encode necessary information in the non-terminals?

15

Limits of CFG: low descriptive power

• subcategorization / argument selection

(1) She sleeps. / She likes her. / *She likes.
S⇒ NP VP⇒ Joe VP ⇒ Joe V ⇒ Joe sleeps
S⇒ NP VP⇒ Joe VP ⇒ Joe V ⇒ Joe likes

• number agreement

(2) They like her. / *They likes her.

• case marking

(3) She likes her. / *She likes they.

• encode necessary information in the non-terminals?

15

Limits of CFG: low descriptive power

• subcategorization / argument selection

(1) She sleeps. / She likes her. / *She likes.
S⇒ NP VP⇒ Joe VP ⇒ Joe V ⇒ Joe sleeps
S⇒ NP VP⇒ Joe VP ⇒ Joe V ⇒ Joe likes

• number agreement

(2) They like her. / *They likes her.

• case marking

(3) She likes her. / *She likes they.

• encode necessary information in the non-terminals?

15

Limits of CFG: low descriptive power

• extend for number agreement, argument selection (transitive vs. non-
transitive) and case marking

S→ NP3sg/nom VP3sg/itr , S→ NP3pl/nom VP3pl/itr ,
S→ NP3sg/nom VP3sg/tr , S→ NP3pl/nom VP3pl/tr ,
VP3sg/tr→ V3sg/tr NP3sg/acc , VP3pl/tr→ V3pl/tr NP3sg/acc ,
VP3sg/itr → V3sg/itr , VP3pl/itr → V3pl/itr ,
NP3sg/nom → she, NP3sg/acc → her, NP3pl/nom → they,
V3sg/itr → sleeps, V3pl/itr → sleep, V3sg/tr → likes, V3pl/tr → like

• every possible combination of arguments selection (e.g. transitive/non-
transitive), number agreement and case marking must have a separate
non-terminal and a separate re-write rule

• grammar writing is quite error prone (and boring)
• linguistic generalizations are difficult to express, e.g.

• subject and verb must have the same number
• the object of a transitive verb must be in accusative case

• solution: feature structures, unification, underspecification (see later)

16

Limits of CFG: low descriptive power

• extend for number agreement, argument selection (transitive vs. non-
transitive) and case marking

S→ NP3sg/nom VP3sg/itr , S→ NP3pl/nom VP3pl/itr ,
S→ NP3sg/nom VP3sg/tr , S→ NP3pl/nom VP3pl/tr ,
VP3sg/tr→ V3sg/tr NP3sg/acc , VP3pl/tr→ V3pl/tr NP3sg/acc ,
VP3sg/itr → V3sg/itr , VP3pl/itr → V3pl/itr ,
NP3sg/nom → she, NP3sg/acc → her, NP3pl/nom → they,
V3sg/itr → sleeps, V3pl/itr → sleep, V3sg/tr → likes, V3pl/tr → like

• every possible combination of arguments selection (e.g. transitive/non-
transitive), number agreement and case marking must have a separate
non-terminal and a separate re-write rule

• grammar writing is quite error prone (and boring)
• linguistic generalizations are difficult to express, e.g.

• subject and verb must have the same number
• the object of a transitive verb must be in accusative case

• solution: feature structures, unification, underspecification (see later)

16

Limits of CFG: low descriptive power

• extend for number agreement, argument selection (transitive vs. non-
transitive) and case marking

S→ NP3sg/nom VP3sg/itr , S→ NP3pl/nom VP3pl/itr ,
S→ NP3sg/nom VP3sg/tr , S→ NP3pl/nom VP3pl/tr ,
VP3sg/tr→ V3sg/tr NP3sg/acc , VP3pl/tr→ V3pl/tr NP3sg/acc ,
VP3sg/itr → V3sg/itr , VP3pl/itr → V3pl/itr ,
NP3sg/nom → she, NP3sg/acc → her, NP3pl/nom → they,
V3sg/itr → sleeps, V3pl/itr → sleep, V3sg/tr → likes, V3pl/tr → like

• every possible combination of arguments selection (e.g. transitive/non-
transitive), number agreement and case marking must have a separate
non-terminal and a separate re-write rule

• grammar writing is quite error prone (and boring)

• linguistic generalizations are difficult to express, e.g.

• subject and verb must have the same number
• the object of a transitive verb must be in accusative case

• solution: feature structures, unification, underspecification (see later)

16

Limits of CFG: low descriptive power

• extend for number agreement, argument selection (transitive vs. non-
transitive) and case marking

S→ NP3sg/nom VP3sg/itr , S→ NP3pl/nom VP3pl/itr ,
S→ NP3sg/nom VP3sg/tr , S→ NP3pl/nom VP3pl/tr ,
VP3sg/tr→ V3sg/tr NP3sg/acc , VP3pl/tr→ V3pl/tr NP3sg/acc ,
VP3sg/itr → V3sg/itr , VP3pl/itr → V3pl/itr ,
NP3sg/nom → she, NP3sg/acc → her, NP3pl/nom → they,
V3sg/itr → sleeps, V3pl/itr → sleep, V3sg/tr → likes, V3pl/tr → like

• every possible combination of arguments selection (e.g. transitive/non-
transitive), number agreement and case marking must have a separate
non-terminal and a separate re-write rule

• grammar writing is quite error prone (and boring)
• linguistic generalizations are difficult to express, e.g.

• subject and verb must have the same number
• the object of a transitive verb must be in accusative case

• solution: feature structures, unification, underspecification (see later)

16

Limits of CFG: low descriptive power

• extend for number agreement, argument selection (transitive vs. non-
transitive) and case marking

S→ NP3sg/nom VP3sg/itr , S→ NP3pl/nom VP3pl/itr ,
S→ NP3sg/nom VP3sg/tr , S→ NP3pl/nom VP3pl/tr ,
VP3sg/tr→ V3sg/tr NP3sg/acc , VP3pl/tr→ V3pl/tr NP3sg/acc ,
VP3sg/itr → V3sg/itr , VP3pl/itr → V3pl/itr ,
NP3sg/nom → she, NP3sg/acc → her, NP3pl/nom → they,
V3sg/itr → sleeps, V3pl/itr → sleep, V3sg/tr → likes, V3pl/tr → like

• every possible combination of arguments selection (e.g. transitive/non-
transitive), number agreement and case marking must have a separate
non-terminal and a separate re-write rule

• grammar writing is quite error prone (and boring)
• linguistic generalizations are difficult to express, e.g.

• subject and verb must have the same number
• the object of a transitive verb must be in accusative case

• solution: feature structures, unification, underspecification (see later)

16

Limits of CFG: lexicalization

Lexicalized grammar

A lexicalized grammar consists of:
(i) a finite set of structures each associated with a lexical item (anchor),
(ii) operation(s) for composing these structures.

Lexicalization

A formalism F can be lexicalized by another formalism F ′,
if for any finitely ambiguous grammar G in F there is a grammar G′ in F ′,
such that (i) G′ is a lexicalized grammar; and

(ii) G and G′ generate the same set.

weak vs. strong lexicalization

• weak lexicalization: preserve the string language

• strong lexicalization: preserve the tree structure

17

Limits of CFG: lexicalization

Lexicalized grammar

A lexicalized grammar consists of:
(i) a finite set of structures each associated with a lexical item (anchor),
(ii) operation(s) for composing these structures.

Lexicalization

A formalism F can be lexicalized by another formalism F ′,
if for any finitely ambiguous grammar G in F there is a grammar G′ in F ′,
such that (i) G′ is a lexicalized grammar; and

(ii) G and G′ generate the same set.

weak vs. strong lexicalization

• weak lexicalization: preserve the string language

• strong lexicalization: preserve the tree structure

17

Limits of CFG: lexicalization

Lexicalized grammar

A lexicalized grammar consists of:
(i) a finite set of structures each associated with a lexical item (anchor),
(ii) operation(s) for composing these structures.

Lexicalization

A formalism F can be lexicalized by another formalism F ′,
if for any finitely ambiguous grammar G in F there is a grammar G′ in F ′,
such that (i) G′ is a lexicalized grammar; and

(ii) G and G′ generate the same set.

weak vs. strong lexicalization

• weak lexicalization: preserve the string language

• strong lexicalization: preserve the tree structure

17

Limits of CFG: lexicalization

• Linguistically interesting:
• syntactic properties of lexical items can be accounted for more directly
• each lexical item comes with the possibility of certain partial syntactic con-
structions

• Formally interesting:
• a finite lexicalized grammar provides finitely many analyses for each string
(finitely ambiguous)

• Computationally interesting:
• the search space during parsing can be delimited (grammar filtering)
• use of corpora in NLP

18

Limits of CFG: lexicalization

• Linguistically interesting:
• syntactic properties of lexical items can be accounted for more directly
• each lexical item comes with the possibility of certain partial syntactic con-
structions

• Formally interesting:
• a finite lexicalized grammar provides finitely many analyses for each string
(finitely ambiguous)

• Computationally interesting:
• the search space during parsing can be delimited (grammar filtering)
• use of corpora in NLP

18

Limits of CFG: lexicalization

• Linguistically interesting:
• syntactic properties of lexical items can be accounted for more directly
• each lexical item comes with the possibility of certain partial syntactic con-
structions

• Formally interesting:
• a finite lexicalized grammar provides finitely many analyses for each string
(finitely ambiguous)

• Computationally interesting:
• the search space during parsing can be delimited (grammar filtering)
• use of corpora in NLP

18

Lexicalization of CFG’s

• lexicalize CFGs:

• recursive (X ⇒∗ X) and unary (X → Y) rules are disallowed
• each rule must consist at least one terminal on the RHS

• lexicalized CFG{ e.g. Greibach normal-form: A → aX or A → a
(a ∈ VT ; A ∈ VN ; X ∈ (VN)∗) [Greibach, 1965]

Question:
Can CFGs be strongly lexicalized (= the set of trees are preserved)?

Answer:
No. Only weak lexicalization possible (= same string language).

19

Lexicalization of CFG’s

• lexicalize CFGs:

• recursive (X ⇒∗ X) and unary (X → Y) rules are disallowed
• each rule must consist at least one terminal on the RHS

• lexicalized CFG{ e.g. Greibach normal-form: A → aX or A → a
(a ∈ VT ; A ∈ VN ; X ∈ (VN)∗) [Greibach, 1965]

Question:
Can CFGs be strongly lexicalized (= the set of trees are preserved)?

Answer:
No. Only weak lexicalization possible (= same string language).

19

Lexicalization of CFG’s

• lexicalize CFGs:

• recursive (X ⇒∗ X) and unary (X → Y) rules are disallowed
• each rule must consist at least one terminal on the RHS

• lexicalized CFG{ e.g. Greibach normal-form: A → aX or A → a
(a ∈ VT ; A ∈ VN ; X ∈ (VN)∗) [Greibach, 1965]

Question:
Can CFGs be strongly lexicalized (= the set of trees are preserved)?

Answer:
No. Only weak lexicalization possible (= same string language).

19

Lexicalization of CFG’s

• lexicalize CFGs:

• recursive (X ⇒∗ X) and unary (X → Y) rules are disallowed
• each rule must consist at least one terminal on the RHS

• lexicalized CFG{ e.g. Greibach normal-form: A → aX or A → a
(a ∈ VT ; A ∈ VN ; X ∈ (VN)∗) [Greibach, 1965]

Question:
Can CFGs be strongly lexicalized (= the set of trees are preserved)?

Answer:
No. Only weak lexicalization possible (= same string language).

19

Lexicalization of CFG’s

• example:
• a CFG G: S → SS, S → a
• lexicalize G ⇒ G′: S → aS, S → a

• same string language, but not the same tree set
• only weak lexicalization possible

by G: by G′:

S

S

S

a

S

a

S

S

a

S

a

S

a S

a S

a S

a

G cannot be strongly lexicalized with some finite CFG, e.g., G′.

20

Lexicalization of CFG’s

• example:
• a CFG G: S → SS, S → a
• lexicalize G ⇒ G′: S → aS, S → a

• same string language, but not the same tree set
• only weak lexicalization possible

by G: by G′:

S

S

S

a

S

a

S

S

a

S

a

S

a S

a S

a S

a

G cannot be strongly lexicalized with some finite CFG, e.g., G′.

20

Lexicalization of CFG’s

• example:
• a CFG G: S → SS, S → a
• lexicalize G ⇒ G′: S → aS, S → a

• same string language, but not the same tree set
• only weak lexicalization possible

by G: by G′:

S

S

S

a

S

a

S

S

a

S

a

S

a S

a S

a S

a

G cannot be strongly lexicalized with some finite CFG, e.g., G′.

20

From CFG to TAG: Tree Substitution Grammar (TSG)

• a CFG rule corresponds to a tree

• LHS as the root node / RHS as the daughter nodes
• e.g., S→ NP VP

S

NP VP

• tree rewriting

• substitution: replace a non-terminal leaf with a tree

• grammar on trees + substitution → Tree Substitution Grammar
A TSG is a quadruple TSG = ⟨Σ,N, S, I⟩, where

Σ is a set of terminal symbols;
N is a set of non-terminal symbols;
S ∈ N is a distinguished non-terminal symbol;
I is a finite set of initial trees.

21

From CFG to TAG: Tree Substitution Grammar (TSG)

• a CFG rule corresponds to a tree

• LHS as the root node / RHS as the daughter nodes
• e.g., S→ NP VP

S

NP VP

• tree rewriting

• substitution: replace a non-terminal leaf with a tree

• grammar on trees + substitution → Tree Substitution Grammar
A TSG is a quadruple TSG = ⟨Σ,N, S, I⟩, where

Σ is a set of terminal symbols;
N is a set of non-terminal symbols;
S ∈ N is a distinguished non-terminal symbol;
I is a finite set of initial trees.

21

From CFG to TAG: Tree Substitution Grammar (TSG)

• a CFG rule corresponds to a tree

• LHS as the root node / RHS as the daughter nodes
• e.g., S→ NP VP

S

NP VP

• tree rewriting

• substitution: replace a non-terminal leaf with a tree

• grammar on trees + substitution → Tree Substitution Grammar

A TSG is a quadruple TSG = ⟨Σ,N, S, I⟩, where
Σ is a set of terminal symbols;
N is a set of non-terminal symbols;
S ∈ N is a distinguished non-terminal symbol;
I is a finite set of initial trees.

21

From CFG to TAG: Tree Substitution Grammar (TSG)

• a CFG rule corresponds to a tree

• LHS as the root node / RHS as the daughter nodes
• e.g., S→ NP VP

S

NP VP

• tree rewriting

• substitution: replace a non-terminal leaf with a tree

• grammar on trees + substitution → Tree Substitution Grammar
A TSG is a quadruple TSG = ⟨Σ,N, S, I⟩, where

Σ is a set of terminal symbols;
N is a set of non-terminal symbols;
S ∈ N is a distinguished non-terminal symbol;
I is a finite set of initial trees.

21

From CFG to TAG: Tree Substitution Grammar

GCFG = ⟨N, T , S, P⟩
P = {

S → NP VP

VP → V NP | AP VP

NP → N | Det N
AP → A

N → Peter | fridge
Det → the

A → easily

V → repaired

}

≈

GTSG = ⟨N, T , S, I⟩
I = {

S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

22

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP VP

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

VP

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

AP VP

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

AP

A

VP

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

AP

A

easily

VP

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

AP

A

easily

VP

V NP

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

Det N

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

Det

the

N

23

From CFG to TAG: Tree Substitution Grammar

GTSG = ⟨N, T , S, I⟩ Example derivation:

I = {
S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

Det

the

N

fridge

23

From CFG to TAG: Tree Substitution Grammar

• TSG is weakly equivalent to CFG (same string language).

• Still no strong lexicalization of CFG⇒ not possible to find a strongly equivalent
(same tree language) lexicalized TSG for each CFG.

• TSG is not powerful enough to describe cross-serial dependencies.

• TSGs can capture more generalizations than CFGs.

• TSG offers extended domain of locality.

S

NP VP

+
VP

V NP

+
V

loves

⇒

S

NP VP

V

loves

NP

• Some applications of TSG:

• in data-oriented parsing (DOP) (Bod 1995),
• Lexicalized TSGs can be extracted from treebanks and used for probabilistic
parsing (Post & Gildea 2009).

24

From CFG to TAG: Tree Substitution Grammar

• TSG is weakly equivalent to CFG (same string language).

• Still no strong lexicalization of CFG⇒ not possible to find a strongly equivalent
(same tree language) lexicalized TSG for each CFG.

• TSG is not powerful enough to describe cross-serial dependencies.

• TSGs can capture more generalizations than CFGs.

• TSG offers extended domain of locality.

S

NP VP

+
VP

V NP

+
V

loves

⇒

S

NP VP

V

loves

NP

• Some applications of TSG:

• in data-oriented parsing (DOP) (Bod 1995),
• Lexicalized TSGs can be extracted from treebanks and used for probabilistic
parsing (Post & Gildea 2009).

24

From CFG to TAG: Tree Substitution Grammar

• TSG is weakly equivalent to CFG (same string language).

• Still no strong lexicalization of CFG⇒ not possible to find a strongly equivalent
(same tree language) lexicalized TSG for each CFG.

• TSG is not powerful enough to describe cross-serial dependencies.

• TSGs can capture more generalizations than CFGs.

• TSG offers extended domain of locality.

S

NP VP

+
VP

V NP

+
V

loves

⇒

S

NP VP

V

loves

NP

• Some applications of TSG:

• in data-oriented parsing (DOP) (Bod 1995),
• Lexicalized TSGs can be extracted from treebanks and used for probabilistic
parsing (Post & Gildea 2009).

24

From CFG to TAG: Tree Substitution Grammar

• TSG is weakly equivalent to CFG (same string language).

• Still no strong lexicalization of CFG⇒ not possible to find a strongly equivalent
(same tree language) lexicalized TSG for each CFG.

• TSG is not powerful enough to describe cross-serial dependencies.

• TSGs can capture more generalizations than CFGs.

• TSG offers extended domain of locality.

S

NP VP

+
VP

V NP

+
V

loves

⇒

S

NP VP

V

loves

NP

• Some applications of TSG:

• in data-oriented parsing (DOP) (Bod 1995),
• Lexicalized TSGs can be extracted from treebanks and used for probabilistic
parsing (Post & Gildea 2009).

24

TSG + Adjunction

• lexicalization of CFG in a linguistically meaningful way

• TSG: still no strong lexicalization of CFG, no cross-serial dependencies etc.

• add adjunction:
• replace a non-terminal node with an “auxiliary” tree
• put the subtree of the replaced node under the footnode (*)

VP

AP

A

easily

VP*

S

NP VP

V

repaired

NP

⇒

S

NP VP

AP

A

easily

VP

V

repaired

NP

25

TSG + Adjunction

• lexicalization of CFG in a linguistically meaningful way

• TSG: still no strong lexicalization of CFG, no cross-serial dependencies etc.

• add adjunction:
• replace a non-terminal node with an “auxiliary” tree
• put the subtree of the replaced node under the footnode (*)

VP

AP

A

easily

VP*

S

NP VP

V

repaired

NP

⇒

S

NP VP

AP

A

easily

VP

V

repaired

NP

25

TSG + Adjunction

• lexicalization of CFG in a linguistically meaningful way

• TSG: still no strong lexicalization of CFG, no cross-serial dependencies etc.

• add adjunction:
• replace a non-terminal node with an “auxiliary” tree
• put the subtree of the replaced node under the footnode (*)

VP

AP

A

easily

VP*

S

NP VP

V

repaired

NP

⇒

S

NP VP

AP

A

easily

VP

V

repaired

NP

25

TSG + Adjunction

• lexicalization of CFG in a linguistically meaningful way

• TSG: still no strong lexicalization of CFG, no cross-serial dependencies etc.

• add adjunction:
• replace a non-terminal node with an “auxiliary” tree
• put the subtree of the replaced node under the footnode (*)

VP

AP

A

easily

VP*

S

NP VP

V

repaired

NP

⇒

S

NP VP

AP

A

easily

VP

V

repaired

NP

25

TSG + Adjunction

⇒ Adjunction at footnodes causes spurious ambiguities in derivations.

⇒ Therefore, this is usually forbidden.

VP

AP

A

easily

VP*

VP

AP

A

easily

VP*
⇒

VP

AP

A

easily

VP

AP

A

easily

VP*

26

From CFG to TAG: Example with adjunction

• tree rewriting

• Substitution: replace a non-terminal leaf with a tree

• Adjunction: replace a non-terminal node with an “auxiliary” tree

GTSG = ⟨N, T , S, I⟩
I = {

S

NP VP

VP

V NP

VP

AP VP

NP

N

NP

Det N

AP

A

A

easily

N

Peter

N

fridge

Det

the

V

repaired

}

≈

S

NP VP

V

repaired

NP

VP

AP

A

easily

VP*

NP

N

Peter

NP

Det N

fridge

Det

the

27

From CFG to TAG: Example with adjunction

• tree rewriting

• Substitution: replace a non-terminal leaf with a tree

• Adjunction: replace a non-terminal node with an “auxiliary” tree

S

NP VP

V

repaired

NP

VP

AP

A

easily

VP*

NP

N

Peter

NP

Det N

fridge

Det

the

Example derivation:
S

NP VP

V

repaired

NP

27

From CFG to TAG: Example with adjunction

• tree rewriting

• Substitution: replace a non-terminal leaf with a tree

• Adjunction: replace a non-terminal node with an “auxiliary” tree

S

NP VP

V

repaired

NP

VP

AP

A

easily

VP*

NP

N

Peter

NP

Det N

fridge

Det

the

Example derivation:
S

NP

N

Peter

VP

V

repaired

NP

27

From CFG to TAG: Example with adjunction

• tree rewriting

• Substitution: replace a non-terminal leaf with a tree

• Adjunction: replace a non-terminal node with an “auxiliary” tree

S

NP VP

V

repaired

NP

VP

AP

A

easily

VP*

NP

N

Peter

NP

Det N

fridge

Det

the

Example derivation:
S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

27

From CFG to TAG: Example with adjunction

• tree rewriting

• Substitution: replace a non-terminal leaf with a tree

• Adjunction: replace a non-terminal node with an “auxiliary” tree

S

NP VP

V

repaired

NP

VP

AP

A

easily

VP*

NP

N

Peter

NP

Det N

fridge

Det

the

Example derivation:
S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

Det N

fridge

27

From CFG to TAG: Example with adjunction

• tree rewriting

• Substitution: replace a non-terminal leaf with a tree

• Adjunction: replace a non-terminal node with an “auxiliary” tree

S

NP VP

V

repaired

NP

VP

AP

A

easily

VP*

NP

N

Peter

NP

Det N

fridge

Det

the

Example derivation:
S

NP

N

Peter

VP

AP

A

easily

VP

V

repaired

NP

Det

the

N

fridge

27

From CFG to TAG: Restrictions on adjunction (I)

Restrictions on the shape of auxiliary trees:

• The root node and the footnode must carry the same non-terminal.

Specific adjunction constraints on target nodes:

• obligatory adjunction (OA): true/false

• null adjunction (NA): no adjoinable auxiliary tree

• selective adjunction (SA): a nonempty set of adjoinable auxiliary trees

Adjunction constraints are essential in generating non-context-free languages
(e.g., the copy language {ww |w ∈ {a, b}∗})!

28

From CFG to TAG: Restrictions on adjunction (I)

Restrictions on the shape of auxiliary trees:

• The root node and the footnode must carry the same non-terminal.

Specific adjunction constraints on target nodes:

• obligatory adjunction (OA): true/false

• null adjunction (NA): no adjoinable auxiliary tree

• selective adjunction (SA): a nonempty set of adjoinable auxiliary trees

Adjunction constraints are essential in generating non-context-free languages
(e.g., the copy language {ww |w ∈ {a, b}∗})!

28

From CFG to TAG: Restrictions on adjunction (I)

Restrictions on the shape of auxiliary trees:

• The root node and the footnode must carry the same non-terminal.

Specific adjunction constraints on target nodes:

• obligatory adjunction (OA): true/false

• null adjunction (NA): no adjoinable auxiliary tree

• selective adjunction (SA): a nonempty set of adjoinable auxiliary trees

Adjunction constraints are essential in generating non-context-free languages
(e.g., the copy language {ww |w ∈ {a, b}∗})!

28

From CFG to TAG: Restrictions on adjunction

Example grammar for the copy language {ww |w ∈ {a, b}∗}:

S

𝜀

SNA

a S

S*NA a

SNA

b S

S*NA b

⇒ TAG = TSG + adjunction + adjunction constraints

29

Example: derivation of abbabb

30

Example: derivation of abbabb

S

𝜀

30

Example: derivation of abbabb

S

𝜀

30

Example: derivation of abbabb

SNA

a S

SNA

𝜀

a

30

Example: derivation of abbabb

SNA

a S

SNA

𝜀

a

30

Example: derivation of abbabb

SNA

a SNA

b S

SNA

SNA

𝜀

a

b

30

Example: derivation of abbabb

SNA

a SNA

b S

SNA

SNA

𝜀

a

b

30

Example: derivation of abbabb

SNA

a SNA

b SNA

b S

SNA

SNA

SNA

𝜀

a

b

b

30

Tree-Adjoining Grammar

Tree Adjoining Grammar (TAG)

A Tree Adjoining Grammar is a tuple G = ⟨N, T , I,A,O,C⟩:

T and N are disjoint alphabets of terminals (T) and non-terminals (N),

I is a finite set of initial trees, and

A is a finite set of auxiliary trees.

O : {v | v is a node in a tree in I ∪ A} → {1, 0} is a function, and

C : {v | v is a node in a tree in I ∪ A} → P(A) is a function.

The trees in I ∪ A are called elementary trees.

Let v be a node in I ∪ A:

• obligatory adjunction (OA): O(v) = 1

• null adjunction (NA): O(v) = 0 and C(v) = ∅

• selective adjunction (SA): O(v) = 0 and C(v) ≠ ∅ and C(v) ≠ A

31

Tree-Adjoining Grammar

Tree Adjoining Grammar (TAG)

A Tree Adjoining Grammar is a tuple G = ⟨N, T , I,A,O,C⟩:

T and N are disjoint alphabets of terminals (T) and non-terminals (N),

I is a finite set of initial trees, and

A is a finite set of auxiliary trees.

O : {v | v is a node in a tree in I ∪ A} → {1, 0} is a function, and

C : {v | v is a node in a tree in I ∪ A} → P(A) is a function.

The trees in I ∪ A are called elementary trees.

Let v be a node in I ∪ A:

• obligatory adjunction (OA): O(v) = 1

• null adjunction (NA): O(v) = 0 and C(v) = ∅

• selective adjunction (SA): O(v) = 0 and C(v) ≠ ∅ and C(v) ≠ A

31

Tree-Adjoining Grammar

TAG ismildly context-sensitive (MCS; Joshi 1985)

• generates the context-free languages

• generates cross-serial dependencies (i.e. ww)

• constant growth (or semi linear, no a2
n
)

• polynomial time parsing (O(n6))
[Schabes 1990, Joshi & Schabes 1997, Kallmeyer: 2010]

⇒ expressivity challenge ✓

TAG can strongly lexicalize finitely ambiguous CFG.
[Schabes 1990, Joshi & Schabes 1997]

(formally, computationally and linguistically interesting (see slide 17))

⇒ lexicalization ✓

32

Tree-Adjoining Grammar

TAG ismildly context-sensitive (MCS; Joshi 1985)

• generates the context-free languages

• generates cross-serial dependencies (i.e. ww)

• constant growth (or semi linear, no a2
n
)

• polynomial time parsing (O(n6))
[Schabes 1990, Joshi & Schabes 1997, Kallmeyer: 2010]

⇒ expressivity challenge ✓

TAG can strongly lexicalize finitely ambiguous CFG.
[Schabes 1990, Joshi & Schabes 1997]

(formally, computationally and linguistically interesting (see slide 17))

⇒ lexicalization ✓

32

The ideal grammar formalism

• linguistically adequate:

• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:

• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:

• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:

• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:

• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:

• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:

• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:
• explicit/formalized

• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:
• explicit/formalized
• decidable, maybe even tractable

• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:
• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:
• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:

• strictly incremental derivations
• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:
• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:
• strictly incremental derivations

• correct predictions wrt. processing complexity

33

The ideal grammar formalism

• linguistically adequate:
• Phenomena:
linearization, agreement, discontinuity, ellipsis, coordination, . . .

• Generalizations:
valency, active/passive diathesis, sentence types, alternations, syntax-semantics
interface, syntax-discourse interface

⇒ descriptive power ✓

• intuitive implementation

• computationally adequate:
• explicit/formalized
• decidable, maybe even tractable
• bidirectional

• psycholinguistically adequate:
• strictly incremental derivations
• correct predictions wrt. processing complexity

33

References

Bod, Rens. 2009. From exemplar to grammar: A probabilistic analogy-based model of language learning.
Cognitive Science 33(5). 752–793.

Chomsky, Noam. 1956. Three models for the description of language. IRE Transactions on Information
Theory 2. 113–124.

Chomsky, Noam. 1957. Syntactic structures. Den Haag: Mouton.

Chomsky, Noam and Marcel-Paul Schützenberger. 1963. The algebraic theory of context-free languages.
In Braffort, P. and D. Hirschberg (eds). Computer programming and formal systems (Studies in Logic and
the Foundations of Mathematics 35). Elsevier. 118–161.

Dowty, David R. 1979. Word meaning and Montague Grammar. Reprinted 1991 by Kluwer Academic
Publishers. Dordrecht: D. Reidel Publishing Company.

Greibach, Sheila A. 1965. A New Normal-Form Theorem for Context-Free Phrase Structure Grammars.
Journal of the ACM. 12(1). 42–52.

Hopcroft, John E., Rajeev Motwani and Jeffrey D. Ullmann. 2006. Introduction to Automata Theory,
Languages, and Computation. 3rd Edition. Addison-Wesley.

34

References

Joshi, Aravind K. 1985. Tree adjoining grammars: how much context-sensitivity is required to provide
reasonable structural descriptions. In Dowty, D., L. Karttunen and A. Zwicky (eds). Natural language
parsing. Cambridge University Press. 206–250.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-Adjoining Grammars. In Rozenberg, G. and A. Salomaa
(eds). Handbook of formal languages Vol. 3. Berlin, New York: Springer. 69–124.

Kallmeyer, Laura. 2010. Parsing beyond Context-Free Grammars. Berlin: Springer.

Post, Matt and Daniel Gildea. 2009. Bayesian learning of a tree substitution grammar. In Proceedings of
the ACL-IJCNLP 2009 Conference. Short Papers. Suntec: Singapore. ACL. 45–48.

Schabes, Yves. 1990. Mathematical and computational aspects of lexicalized grammars. PhD thesis:
University of Pennsylvania.

Shieber, Stuart. 1985. Evidence against the context-freeness of natural language. Linguistics and
Philosophy 8. 333–343.

35

