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Recall: definition of TAG

Tree Adjoining Grammar (TAG)

A Tree Adjoining Grammar is a tuple G = ⟨N, T , I,A,O,C⟩:
T and N are disjoint alphabets of terminals (T ) and non-terminals (N),

I is a finite set of initial trees, and

A is a finite set of auxiliary trees.

O : {v | v is a node in a tree in I ∪ A} → {1, 0} is a function, and
C : {v | v is a node in a tree in I ∪ A} → P(A) is a function.

The trees in I ∪ A are called elementary trees.

Let v be a node in I ∪ A:

• obligatory adjunction (OA): O(v) = 1

• null adjunction (NA): O(v) = 0 and C(v) = ∅
• selective adjunction (SA): O(v) = 0 and C(v) ≠ ∅ and C(v) ≠ A
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Recall: operations in TAG

Substitution: replace a non-terminal leaf node with another tree

Z

Y X

X

=⇒

Z

Y X

Adjunction: replace a non-terminal node with an auxiliary tree

Z

Y X

X

X*

=⇒

Z

Y X

X
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Recall: the ideal grammar formalism

TAG ismildly context-sensitive

• generates the context-free languages

• generates cross-serial dependencies (i.e. ww)

• constant growth (or semi linear, no a2
n
)

• polynomial time parsing (O(n6))
[Joshi 1985, Schabes 1990, Joshi & Schabes 1997, Kallmeyer 2010]

TAG can strongly lexicalize finitely ambiguous CFG.

[Schabes 1990, Joshi & Schabes 1997]

TAG is linguistically, computationally and psycholinguistically adequate.
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Example TAG

GTAG = ⟨N, T , I,A⟩, where

N = {S, NP, VP, V, Adv, Det}

T = {finds, the, pim, always, way}

I = {
NP

Pim

S

VP

NP↓V

finds

NP↓

NP

way

} A = {
VP

VP
∗

Adv

always

NP

NP
∗

Det

the

}

XP↓: substitution node

XP*: foot node
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Derivation in TAG

• a derivation in TAG begins with an initial tree

• in a final tree all leaves have terminal symbols{ derived tree
• derived tree in TAG

• the tree obtained by derivation

• final phrase structure tree

• equivalent to the derivation tree of a CFG

• derivation tree in TAG

• uniquely describes a TAG derivation

• the derivation tree contains:

• nodes for all elementary trees used in the derivation,

• edges for all adjunctions and substitutions performed throughout the derivation,

• edge labels indicating the target node of the rewriting operation
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Derivation trees

For the node addresses of elementary trees, Gorn addresses are used:

• the root has address 𝜖 (or 0)

• the nth daughter of the node with address p has address pn.

0

2

22

221

21

212211

1

1312

121

11

Derivation tree

Whenever an elementary tree 𝛾 rewrites the node at Gorn address p in the

elementary tree 𝛾 ′, there is an edge from 𝛾 ′ to 𝛾 labeled with p.

Important: the Gorn addresses always refer to position in the elementary trees, not

in the (partially) derived tree.
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Example derivation

Derived tree:

NP

Pim

VP

VP
∗

Adv

always

S

VP

NP↓V

finds

NP↓
NP

NP
∗

Det

the

NP

way

Derivation tree:

finds

pim way

the

always

1 22

0

2
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Linguistic analyses with LTAG

What is an elementary tree, and what is its shape?

syntactic/semantic properties

of linguistic objects

?
=⇒ elementary trees

⇒ Syntactic design principles [Frank 2002]

• Lexicalization

• Fundamental TAG Hypothesis (FTH)

• Condition on Elementary Tree Minimality (CETM)

• 𝜃 -Criterion for TAG

⇒ Semantic design principles [Abeille & Rambow 2000]

⇒ Design principle of economy
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Syntactic design principles (1): Lexicalization

Each elementary tree has at least one non-empty lexical item, its lexical anchor.

⇒ All widely used grammar formalisms support some kind of lexicalization!

⇒ TAG → LTAG: Lexicalized Tree-Adjoining Grammar

[Schabes & Joshi 1990, Joshi & Schabes 1991]

(Recall: reasons for lexicalization!)
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Syntactic design principles (2): FTH

Fundamental TAG Hypothesis (FTH)

Every syntactic dependency is expressed locally within an elementary tree.

[Frank 2002]

“syntactic dependency”
• valency/subcategorization

• binding

• filler-gap constructions (extraction)

• . . .

“expressed within an elementary tree”
• terminal leaf (i.e. lexical anchor)

• nonterminal leaf (substitution node and footnode)

• marking an inner node for obligatory adjunction

⇒ extended domain of locality
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Complex primitives

Complicate locally, simplify globally.

“[...] start with complex (more complicated) primitives, which capture directly some crucial

linguistic properties and then introduce some general operations for composing these complex

structures (primitive or derived). What is the nature of these complex primitives? In the

conventional approach the primitive structures (or rules) are kept as simple as possible. This has

the consequence that information (e.g., syntactic and semantic) about a lexical item (word) is

distributed over more than one primitive structure. Therefore, the information associated with a

lexical item is not captured locally, i.e., within the domain of a primitive structure.”

[Joshi 2004]
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Syntactic design principles (3): CETM

Condition on Elementary Tree Minimality (CETM)

The syntactic heads in an elementary tree and their projections must form the

extended projection of a single lexical head.

[Frank 2002]

Note: We only use simple, non-extended projections!

XP

X

head

S|VP

...VP

...V

...sleeps...

...

...
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Syntactic design principles (4): 𝜃 -Criterion for TAG

Thematic role (𝜃 -role)

The semantic relationship of an argument with its predicate is expressed through

the assignment of a role by the predicate to the argument.

• Different theta-roles have different labels, such as Agent, Theme, Patient,

Goal, Source, Experiencer etc.

• Bart kicked the ball.

• kicked { predicate

• Bart { Agent

• ball { Theme/Patient

• The ball was kicked by Bart.

• kicked { predicate

• Bart { Agent

• ball { Theme/Patient
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Syntactic design principles (4): 𝜃 -Criterion for TAG

𝜃 -Criterion (TAG version) [Frank 2002]

a. If H is the lexical head of an elementary tree T,

H assigns all of its 𝜃 -roles in T.

b. If A is a frontier non-terminal of elementary tree T,

A must be assigned a 𝜃 -role in T.

=⇒ Valency/subcategorization is expressed only with non-terminal leaves!

S

VP

V

sleep

NP↓

S

VP

NP↓V

love

NP↓

S

VP

S
∗

V

try

NP↓

S

VP

NP↓NP↓V

give

NP↓
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Further design principles

Semantic design principles

Predicate-argument co-occurrence:

Each elementary tree associated with a predicate contains a non-terminal leaf for

each of its arguments.

Semantic anchoring:

Elementary trees are not semantically void (to, that.)

Compositional principle:

An elementary tree corresponds to a single semantic unit.

Design principle of economy

The elementary trees are shaped in such a way, that the size of the elementary

trees and the size of the grammar is minimal.
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Sample derivations: NP and PP complements

(1) Pim gave Bill a book.

Elementary trees:
S

VP

NP↓NP↓V

gave

NP↓

NP

N

Pim

NP

N

Bill

NP

N

book

NP

NP
∗

Det

a

Derivation tree:

gave

pim bill book

a

1 22 23

0
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Sample derivations: NP and PP complements

(2) Pim gave a book to Bill.

Elementary trees:
S

VP

PP

NP↓P

to

NP↓V

gave

NP↓

NP

N

Pim

NP

N

Bill

NP

N

book

NP

NP
∗

Det

a

Derivation tree:
gave

pim book bill

a

1 22 232

0
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Sample derivations: Sentential complements

(3) Pim hopes that Bill wins.

Elementary trees:
S

VP

S
∗

V

hopes

NP↓

S

VP

V

wins

NP↓

NP

N

Pim

NP

N

Bill

S

S
∗

Comp

that

Derivation tree:

wins

pim

bill

hopes

that

0 1

0

1
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Modification and functional elements

How to insert modifiers (e.g. easily) and functional elements (complementizers,

determiners, do-auxiliaries, ...)?

• either as co-anchor in the elementary tree of the lexical item they are associ-

ated with

S

S

VP

sleeps

NP↓

Comp

that

S

VP

AP

easily

VP

sleeps

NP↓

• or by separate auxiliary trees (e.g., XTAG grammar)

S

S
∗

Comp

that

VP

AP

easily

VP
∗

⇒ Footnodes/Adjunctions indicate both comple-

mentation and modification.

⇒ Enhancement of the CETM

[see Abeille & Rambow 2000]
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Sample derivations: Modifiers

(4) The good student participated in every course during the semester.

Elementary trees:
S

VP

PP

NP↓P

in

V

part .

NP↓

NP

N

stud .

NP

N

course

NP

N

sem.

NP

NP
∗

Det

the

NP

NP
∗

Det

every

N

N
∗

AP

good

VP

PP

NP↓P

during

VP
∗
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Sample derivations: Modifiers

Derivation tree:
part_in

stud course during

the good every semester

the

1 222 2

0 1 0 22

0
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Feature structures

• generalizing agreement and case marking

• modelling adjunction constraints (TAG specific)

⇒ use feature structures

⇒ smaller grammars that are easier to maintain

• case assignment:

Joe saw her. / *Joe saw she.
Joe expected her to come. (ECM) / *Joe expected she to come.

• person/number agreement:

You sing. / *You sings.
She sings. / *She sing.
This woman sings. / *This woman sing.
These women sing. / *These women sings.

• also: definiteness agreement (Hungarian), ...
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Feature structures

• a list of features (e.g., case) and values (e.g., nom)

• represented as attribute-value matrices (AVM)

sings:

cat v
vform finite

agr


num sg

pers 3




• feature values:

• atomic (e.g., the value of cat)

• feature structures (e.g., the value of agr)

• combining constituents ⇒ unify feature structures
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Unification

• unification (⊔) is a partial operation on feature structures

• intuitively: unification is the operation of combining two feature structures

such that the new feature structure contains all the information of the

original two, and nothing more
cat vp

agr

[
num pl

]
⊔ 

cat vp

agr

[
pers 3

]
=

cat vp

agr


num pl

pers 3




• partial operation ⇒ unification can fail[
cat np
num sg

]
⊔
[
cat np
num pl

]
= FAIL

• underspecified feature values[
cat np
case nom | acc

]
⊔
[
cat np
case acc

]
=

[
cat np
case acc

]
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Unification: definition

Unification (F ⊔ G)

The unification of two feature structures F and G is (if it exists) the smallest

feature structure that is subsumed by both F and G.

Subsumption (F1 ⊑ F2)

A feature structure F1 subsumes (⊑) another feature structure F2, iff all the

information that is contained in F1 is also contained in F2.

That is, (if it exists) F ⊔ G is the feature structure with the following three properties:

(1) F ⊑ (F ⊔ G)
(2) G ⊑ (F ⊔ G)
(3) If H is a feature structure such that F ⊑ H and G ⊑ H, then (F ⊔G) ⊑ H. If there is no

smallest feature structure that is subsumed by both F and G, then we say that F ⊔ G
is undefined.

For any feature structure F : F ⊔ [ ] = [ ] ⊔ F = F

⇒ The empty feature structure is the identity element for unification
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Reentrancies

• the paths that both lead to the same node ⇒ to the same value

⇒ hence, they share that value

• this property of sharing value(s) is called reentrancy

• in AVMs: expressed by coindexing the shared values (boxed numbers)

• within feature structures:[
attr1

1

attr2
1

] [
attr1

1 val1
attr2

1

] 
attr1

1 val1

attr2

[
attr3

1

]
• between feature structures (in a tree):

[
attr1

1

][
attr1

1

]
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TAG with feature structures

• idea: use feature structures as non-terminal nodes

• at substitution/adjunction the feature structures of the participating nodes

are unified

28
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TAG with feature structures

• idea: use feature structures as non-terminal nodes

• at substitution/adjunction the feature structures of the participating nodes

are unified



cat np

agr


num sg

pers 3


case nom


she

[
cat s

]

cat vp

agr 1


num sg

pers 3




sings


cat np
agr 1

case nom


↓
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TAG with feature structures

• idea: use feature structures as non-terminal nodes

• at substitution/adjunction the feature structures of the participating nodes

are unified

[
cat s

]

cat vp

agr 1


num sg

pers 3




sings



cat np

agr 1


num sg

pers 3


case nom


she
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FTAG

• Feature-structure based TAG [Vijay-Shanker & Joshi 1988]

• annotate each node with two feature structures

• split the feature structures → for adjunction

• top features: the relation of the node to the tree above it

• bottom features: the relation of the node to the tree below it

FTAG description of node 𝜂

1. The relation of 𝜂 to its supertree is called features structure t𝜂 .
2. The relation of 𝜂 to its descendants is called features structure b𝜂 .

• at the final derived tree (i.e., after all substitutions/adjunctions) top and

bottom features are unified for all nodes

29
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FTAG: Substitution

Substitution in FTAG

The top features of the root of the tree to substitute unify with the top features

of the substitution node.

Y
[t1 ]
[b]

X

. . .Y↓[t2 ] ⇒

X

. . .Y
[t1 ]⊔[t2 ]
[b]

• substitution nodes (Y↓) have only top features
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FTAG: Adjunction

Adjunction in FTAG

The top features of the root of the auxiliary tree unify with the top features of

the adjunction node, and the bottom features of the footnode of the auxiliary

tree unify with the bottom features of the adjunction node.

X

Y

[ty ]
[by ]. . .

Y
[tr ]
[br ]

ZY
∗ [tf ]
[bf ]

⇒

X

Y

[ty ]⊔[tr ]
[br ]

ZY

[tf ]
[by ]⊔[bf ]

. . .

31



FTAG Example: She is singing.

Obligatory adjunction: feature mismatch between top and bottom[
cat s

][
cat s

]

cat vp
agr 1

mode ind

[
cat vp
mode ger

]
[
cat v

][
cat v

]
singing

[
cat np
agr 1

]
↓



cat vp
mode ind

agr

[
pers 3
num sg

]
[

cat vp
]
[
cat vp

][
cat vp
mode ger

]*[
cat v

][
cat v

]
is

[
cat np

]


cat np

agr

[
num sg
pers 3

]
case nom


she
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FTAG Example: She is singing.

S

VP

[
agr 1

mode ind

]
[
mode ger

]
V

singing

NP↓
[
agr 1

]
VP


mode ind

agr

[
pers 3
num sg

][ ]
VP*

[ ][
mode ger

]V

is

NP

[ ]

agr

[
num sg
pers 3

]
case nom


she

• feature mismatch at the VP node ⇒ adjunction at VP is obligatory

• at adjunction of is and substitution of she:

• top feature of the root node of is unifies with the top feature of the VP node of

singing
• bottom feature of the footnode of is unifies with the bottom feature of the VP

node of singing
• top feature of she unifies with the top feature of the NP node of singing
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FTAG Example: She is singing.

derivation tree:
singing

she is

1 2

S

VP

agr 1

[
pers 3
num sg

]
mode ind

[ ]
VP

[ ][
mode ger

]
V

singing

V

is

NP

[
agr 1

]

agr

[
pers 3
num sg

]
case nom


she
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FTAG example: She is singing.

at the final derived tree (after all substitutions/adjunctions) the top and bottom

feature of each node unify:

S

VP

agr 1

[
pers 3
num sg

]
mode ind


VP

[
mode ger

]
V

singing

V

is

NP

agr 1

[
pers 3
num sg

]
case nom


she
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Case assignment

• nouns carry the case, which is ‘checked’

• noun case is checked against the case value assigned by the verb during the

unification

• features of case-assignment:

• ⟨case⟩ with values: nom | acc | gen | none
⇒ Ns, NPs

• ⟨assign-case⟩ with values: nom | acc | none
⇒ case assigners (prepositions, verbs) and S, VP, PP nodes that dominate them

NP

[ ]

agr

[
num sg
pers 3

]
case nom


she

NP

[ ]

agr

[
num sg
pers 3

]
case acc


her

S

VP

[
assign-case nom

][
tense past

]
laughed

NP

[
case nom

]
↓
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The XTAG-project

• was located at the University of Pennsylvania (ca. 1988-2001)

• grammar (set of tree templates/families)

• tools (browser, editor, parser, . . . )

• URL: http://www.cis.upenn.edu/∼xtag/
• the architecture of the XTAG-grammar

Morph Database

Syntactic Database

Tree Database

inflected form→ root form,

POS, inflectional information

root form, POS→ list of tree templates or

or tree families, list of feature equations

list of tree templates and tree families
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The architecture of the XTAG-grammar
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Lexical insertion

• drawing an edge between the lexical anchor and the lexical insertion site

• prior to substitution and adjunction

• the feature structures of the lexical anchor and the insertion site unify

S

VP

NPV⋄

likes

NP

39



The architecture of the XTAG-grammar

tree template for the declarative transitive verb (𝛼nx0Vnx1):

S

VP

NPV⋄

NP

A tree family

• is a set of tree templates

• represents a subcategorization frame, and

contains all syntactic configurations the subcategorization frame can be

realized in

Example: 𝛼nx0Vnx1 ∈ Tnx0Vnx1
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Tree families

Example tree families

• intransitive: Tnx0V

tree templates: base tree, wh-moved subject, imperative, determiner gerund,

... etc.

• transitive: Tnx0Vnx1

tree templates: base tree, wh-moved subject, wh-moved object, imperative,

determiner gerund, passive with by , ... etc.

Some figures [Prolo 2002]

subcat. group no. of families no. of trees

intransitive 1 12

transitive 1 39

ditransitive 1 46

light verb constr. 2 53

.

.

.
.
.
.

.

.

.

TOTAL: 57 1008
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