
Tree-Adjoining Grammars: Theory and implementation

Day 3 – part I

Kata Balogh & Simon Petitjean

Heinrich-Heine-Universität Düsseldorf, Carl von Ossietzky Universität Oldenburg

NASSLLI 2025

June 23 – 27, 2025

University of Washington, Seattle

Tree templates and tree families

A tree family

• is a set of tree templates

• represents a subcategorization frame, and

• contains all syntactic configurations the subcategorization frame can be

realized in.

Example tree families

• intransitive: Tnx0V

tree templates: base tree, wh-moved subject, imperative, determiner gerund, ... etc.

• transitive: Tnx0Vnx1

tree templates: base tree, passive with by , wh-moved subject, wh-moved object,

imperative, determiner gerund, ... etc.

2

Tree templates and tree families

A tree family

• is a set of tree templates

• represents a subcategorization frame, and

• contains all syntactic configurations the subcategorization frame can be

realized in.

Example tree families

• intransitive: Tnx0V

tree templates: base tree, wh-moved subject, imperative, determiner gerund, ... etc.

• transitive: Tnx0Vnx1

tree templates: base tree, passive with by , wh-moved subject, wh-moved object,

imperative, determiner gerund, ... etc.

2

Tree templates and tree families

A tree family

• is a set of tree templates

• represents a subcategorization frame, and

• contains all syntactic configurations the subcategorization frame can be

realized in.

Example tree families

• intransitive: Tnx0V

tree templates: base tree, wh-moved subject, imperative, determiner gerund, ... etc.

• transitive: Tnx0Vnx1

tree templates: base tree, passive with by , wh-moved subject, wh-moved object,

imperative, determiner gerund, ... etc.

2

Example syntactic phenomenon: extraction

• certain constructions permit an element in one position to fill the grammati-

cal role associated with another position

• the positions can be arbitrarily far apart

• filler-gap constructions, e.g.

• topicalization

• wh-movement

• long-distance dependencies ⇒ extraction
• subject extraction (𝛼W0nx0V)

• object extraction (𝛼W1nx0Vnx1)

• preposition stranding (𝛼W1nx0VPnx1)

• AP complement extraction (𝛼W1nx0Vnx1)

3

Example syntactic phenomenon: extraction

• certain constructions permit an element in one position to fill the grammati-

cal role associated with another position

• the positions can be arbitrarily far apart

• filler-gap constructions, e.g.

• topicalization

• wh-movement

• long-distance dependencies ⇒ extraction
• subject extraction (𝛼W0nx0V)

• object extraction (𝛼W1nx0Vnx1)

• preposition stranding (𝛼W1nx0VPnx1)

• AP complement extraction (𝛼W1nx0Vnx1)

3

Example syntactic phenomenon: extraction

• certain constructions permit an element in one position to fill the grammati-

cal role associated with another position

• the positions can be arbitrarily far apart

• filler-gap constructions, e.g.

• topicalization

• wh-movement

• long-distance dependencies ⇒ extraction
• subject extraction (𝛼W0nx0V)

• object extraction (𝛼W1nx0Vnx1)

• preposition stranding (𝛼W1nx0VPnx1)

• AP complement extraction (𝛼W1nx0Vnx1)

3

Example syntactic phenomenon: extraction

• certain constructions permit an element in one position to fill the grammati-

cal role associated with another position

• the positions can be arbitrarily far apart

• filler-gap constructions, e.g.

• topicalization

• wh-movement

• long-distance dependencies ⇒ extraction
• subject extraction (𝛼W0nx0V)

• object extraction (𝛼W1nx0Vnx1)

• preposition stranding (𝛼W1nx0VPnx1)

• AP complement extraction (𝛼W1nx0Vnx1)

3

Extraction: tree templates

subject extraction object extraction preposition stranding
(𝛼W0nx0Vnx1) (𝛼W1nx0Vnx1) (𝛼W1nx0VPnx1)

S

S

VP

NP↓V⋄

NPi

𝜖

NPi↓

S

S

VP

NPi

𝜖

V⋄

NP↓

NPi↓

S

S

VP

PP

NPi

𝜖

P⋄

V⋄

NP↓

NPi↓

4

Topicalization

Topicalization

Placing a constituent (subject, object, ...) into a sentence-initial position.

(1) a. Pim gave a book to Mia. (base configuration)

b. A booki , Pim gave _i to Mia. (object NP)

c. Miai , Pim gave a book to _i . (NP from PP)

d. To Miai , Pim gave a book _i . (PP)

e. *Pim, _i gave a book to Mia. (no subject topicalization!)

• unbounded dependency→ the dependency between an extracted con-

stituent and its trace may extend across more clause boundaries

(2) a. The booki , Bill knows (that) Joe loves _i .

b. The booki , Tom believes (that) Bill knows (that) Joe loves _i .

5

Topicalization

Topicalization

Placing a constituent (subject, object, ...) into a sentence-initial position.

(1) a. Pim gave a book to Mia. (base configuration)

b. A booki , Pim gave _i to Mia. (object NP)

c. Miai , Pim gave a book to _i . (NP from PP)

d. To Miai , Pim gave a book _i . (PP)

e. *Pim, _i gave a book to Mia. (no subject topicalization!)

• unbounded dependency→ the dependency between an extracted con-

stituent and its trace may extend across more clause boundaries

(2) a. The booki , Bill knows (that) Joe loves _i .

b. The booki , Tom believes (that) Bill knows (that) Joe loves _i .

5

Topicalization

Topicalization

Placing a constituent (subject, object, ...) into a sentence-initial position.

(1) a. Pim gave a book to Mia. (base configuration)

b. A booki , Pim gave _i to Mia. (object NP)

c. Miai , Pim gave a book to _i . (NP from PP)

d. To Miai , Pim gave a book _i . (PP)

e. *Pim, _i gave a book to Mia. (no subject topicalization!)

• unbounded dependency→ the dependency between an extracted con-

stituent and its trace may extend across more clause boundaries

(2) a. The booki , Bill knows (that) Joe loves _i .

b. The booki , Tom believes (that) Bill knows (that) Joe loves _i .

5

Topicalization

Topicalization

Placing a constituent (subject, object, ...) into a sentence-initial position.

(1) a. Pim gave a book to Mia. (base configuration)

b. A booki , Pim gave _i to Mia. (object NP)

c. Miai , Pim gave a book to _i . (NP from PP)

d. To Miai , Pim gave a book _i . (PP)

e. *Pim, _i gave a book to Mia. (no subject topicalization!)

• unbounded dependency→ the dependency between an extracted con-

stituent and its trace may extend across more clause boundaries

(2) a. The booki , Bill knows (that) Joe loves _i .

b. The booki , Tom believes (that) Bill knows (that) Joe loves _i .

5

Wh-constructions

wh-movement

A long-distance extraction of a constituent as a wh-phrase.

• wh-questions (or constituent questions)

(3) a. [Who]i _i read my book?
b. [What]i did Joe read _i?
c. [Which book]i did Pim say Joe had read _i?

• bounded dependency → island constraints, for example:

(4) Sam knows the student that likes Pim.

*Whomi does Sam know the student that likes _i?

• wh-questions involve subject-auxiliary inversion: the auxiliary verb (do,
have, be, . . .) precedes the subject

6

Wh-constructions

wh-movement

A long-distance extraction of a constituent as a wh-phrase.

• wh-questions (or constituent questions)

(3) a. [Who]i _i read my book?
b. [What]i did Joe read _i?
c. [Which book]i did Pim say Joe had read _i?

• bounded dependency → island constraints, for example:

(4) Sam knows the student that likes Pim.

*Whomi does Sam know the student that likes _i?

• wh-questions involve subject-auxiliary inversion: the auxiliary verb (do,
have, be, . . .) precedes the subject

6

Wh-constructions

wh-movement

A long-distance extraction of a constituent as a wh-phrase.

• wh-questions (or constituent questions)

(3) a. [Who]i _i read my book?
b. [What]i did Joe read _i?
c. [Which book]i did Pim say Joe had read _i?

• bounded dependency → island constraints, for example:

(4) Sam knows the student that likes Pim.

*Whomi does Sam know the student that likes _i?

• wh-questions involve subject-auxiliary inversion: the auxiliary verb (do,
have, be, . . .) precedes the subject

6

Wh-constructions

wh-movement

A long-distance extraction of a constituent as a wh-phrase.

• wh-questions (or constituent questions)

(3) a. [Who]i _i read my book?
b. [What]i did Joe read _i?
c. [Which book]i did Pim say Joe had read _i?

• bounded dependency → island constraints, for example:

(4) Sam knows the student that likes Pim.

*Whomi does Sam know the student that likes _i?

• wh-questions involve subject-auxiliary inversion: the auxiliary verb (do,
have, be, . . .) precedes the subject

6

Subject-auxiliary inversion

• Obligatory subject-auxiliary inversion in direct questions with object

extraction:

(1) a. Whati does John read _i?

b. *Whati John does read _i?

c. *Whati John reads _i?

• No subject-auxiliary inversion in embedded wh-questions:

(2) a. I wonder [whati John reads _i].

b. *I wonder [whati does John read _i].

• No subject-auxiliary inversion in topicalization:

(3) a. *[The meeting]i , have John missed _i .

b. [This meeting] i John have missed _i .

7

Subject-auxiliary inversion

• Obligatory subject-auxiliary inversion in direct questions with object

extraction:

(1) a. Whati does John read _i?

b. *Whati John does read _i?

c. *Whati John reads _i?

• No subject-auxiliary inversion in embedded wh-questions:

(2) a. I wonder [whati John reads _i].

b. *I wonder [whati does John read _i].

• No subject-auxiliary inversion in topicalization:

(3) a. *[The meeting]i , have John missed _i .

b. [This meeting] i John have missed _i .

7

Subject-auxiliary inversion

• Obligatory subject-auxiliary inversion in direct questions with object

extraction:

(1) a. Whati does John read _i?

b. *Whati John does read _i?

c. *Whati John reads _i?

• No subject-auxiliary inversion in embedded wh-questions:

(2) a. I wonder [whati John reads _i].

b. *I wonder [whati does John read _i].

• No subject-auxiliary inversion in topicalization:

(3) a. *[The meeting]i , have John missed _i .

b. [This meeting] i John have missed _i .

7

Extraction: features

Features for extraction:

• <extracted> := + | – indicate extraction in the S-node

• <wh> := + | – indicate the presence of a wh-pronoun

• <inv> := + | – indicate inversion

Capturing:

• no inversion with topicalization (Booksi , people read _i .)

• no topicalized subject (*Peoplei , _i read books.)

• no inversion with subject wh-extraction (Whoi _i read books?)

• inversion with object wh-extraction (Whati do people read _i?)

8

Extraction: features

Features for extraction:

• <extracted> := + | – indicate extraction in the S-node

• <wh> := + | – indicate the presence of a wh-pronoun

• <inv> := + | – indicate inversion

Capturing:

• no inversion with topicalization (Booksi , people read _i .)

• no topicalized subject (*Peoplei , _i read books.)

• no inversion with subject wh-extraction (Whoi _i read books?)

• inversion with object wh-extraction (Whati do people read _i?)

8

Extraction: tree templates with features

Tree template for subject extraction (simplified); 𝛼W0nx0V

Sq
[]

inv 4

wh 3

extr +


Sr

[
inv 4

wh 3

]
[
inv –
agr 2

]

VP

[
agr 2

][]
V⋄

NP

[
trace 5

]

𝜖

NP↓ 
agr 2

wh 3 +
trace 5



⇒ subject extraction only for wh-phrases; no topicalized subject
9

Inversion with object extraction

• in case of object extraction

• topicalization→ no inversion

• wh-questions→ inversion

• ⇒ equation of the values of

Sr : top.<inv> and the extracted NP: top.<wh>

Sq
[]

inv 3

wh 3

extr +


Sr

[
inv 3

][
inv –

]NP↓
[
wh 3

]

10

Inversion with object extraction

• in case of object extraction

• topicalization→ no inversion

• wh-questions→ inversion

• ⇒ equation of the values of

Sr : top.<inv> and the extracted NP: top.<wh>

Sq
[]

inv 3

wh 3

extr +


Sr

[
inv 3

][
inv –

]NP↓
[
wh 3

]

10

Extraction: tree templates with features

Tree template for object extraction (simplified!); 𝛼W1nx0Vnx1

Sq
[]

inv 3

wh 3

extr +


Sr

[
inv 3

agr 2

]
[
inv –
agr 1

]

VP

[
agr 1

][]

NP

[
trace 5

]
V⋄

NP

[
agr 1

]

NP↓
[
wh 3

trace 5

]

11

Analyses

Books, people read.

Sq
[]

inv 3

wh 3

extr +


Sr

[
inv 3

agr 2

]

inv –

agr 1

[
3sg –

]
VP

NP

𝜖

V

read

NP↓
[
agr 1

]

NP↓
[
wh 3

] NP-trees to substitute (subj, obj):

NP

[][
wh –

]

books

NP

[][
arg

[
3sg –

]]

people

12

Analyses

Books, people read.

Sq
[]

inv 3

wh 3

extr +


Sr

[
inv 3

agr 2

]

inv –

agr 1

[
3sg –

]
VP

NP

𝜖

V

read

NP

[
agr 1

][
agr

[
3sg –

]]
people

NP

[
wh 3

][
wh –

]

books

Sq

inv 3 –
wh 3 –
extr +


Sr


inv 3 –

agr 1

[
3sg –

]
VP

NP

𝜖

V

read

NP

[
agr 1

[
3sg –

]]
people

NP

[
wh 3 –

]

books

13

Analyses

What do people read?

Sq
[]

inv 3

wh 3

extr +


Sr

[
inv 3

agr 2

]

inv –

agr 1

[
3sg –

]
VP

NP

𝜖

V

read

NP↓
[
agr 1

]

NP↓
[
wh 3

] NP-trees to substitute (subj, obj):

NP

[][
wh +

]
what

NP

[][
arg

[
3sg –

]]
people

14

Analyses

What do people read?

Sq
[]

inv 3

wh 3

extr +


Sr

[
inv 3

agr 2

]

inv –

agr 1

[
3sg –

]
VP

NP

𝜖

V

read

NP

[
agr 1

][
agr

[
3sg –

]]
people

NP

[
wh 3

][
wh +

]

what

• cannot end the derivation here

• forcing adjunction at Sr

• adjoin the tree of ‘do’

S

[]

inv +

agr

[
3sg –

]
S
∗ [
agr

[
3sg –

]][
inv –

]V

do

15

Analyses

What do people read?

Sq
[]

inv 3

wh 3

extr +


S

[
inv 3

agr 2

]

inv +

agr

[
3sg –

]
S

[
agr

[
3sg –

]]

inv –

agr 1

[
3sg –

]
VP

NP

𝜖

V

read

NP

[
agr 1

][
agr

[
3sg –

]]
people

V

do

NP

[
wh 3

][
wh +

]

what

Sq

inv 3 +
wh 3 +
extr +


S

inv 3 +

agr 2

[
3sg –

]
S

inv –

agr 1

[
3sg –

]
VP

NP

𝜖

V

read

NP

[
agr 1

[
3sg –

]]

people

V

do

NP

[
wh 3 +

]

what

16

LTAG semantics: overview

Goal: an LTAG architecture of the syntax-semantics interface that

• is compositional→ the meaning of a complex expression can be computed

from the meaning of its subparts and its composition operation.

• pairs entire elementary trees with meaning components

Three principal approaches:

1. LTAG semantics with synchronous TAG (STAG)

[Shieber 1994, Nesson & Shieber 2006, 2008]

2. unification based LTAG semantics with predicate logic

[Kallmeyer & Joshi 2003, Gardent & Kallmeyer 2003, Kallmeyer & Romero 2008]

3. unification based LTAG semantics with frames

[Kallmeyer & Osswald 2013, Kallmeyer & Osswald & Pogodalla 2016]

17

LTAG semantics: overview

Goal: an LTAG architecture of the syntax-semantics interface that

• is compositional→ the meaning of a complex expression can be computed

from the meaning of its subparts and its composition operation.

• pairs entire elementary trees with meaning components

Three principal approaches:

1. LTAG semantics with synchronous TAG (STAG)

[Shieber 1994, Nesson & Shieber 2006, 2008]

2. unification based LTAG semantics with predicate logic

[Kallmeyer & Joshi 2003, Gardent & Kallmeyer 2003, Kallmeyer & Romero 2008]

3. unification based LTAG semantics with frames

[Kallmeyer & Osswald 2013, Kallmeyer & Osswald & Pogodalla 2016]

17

LTAG semantics: overview

Goal: an LTAG architecture of the syntax-semantics interface that

• is compositional→ the meaning of a complex expression can be computed

from the meaning of its subparts and its composition operation.

• pairs entire elementary trees with meaning components

Three principal approaches:

1. LTAG semantics with synchronous TAG (STAG)

[Shieber 1994, Nesson & Shieber 2006, 2008]

2. unification based LTAG semantics with predicate logic

[Kallmeyer & Joshi 2003, Gardent & Kallmeyer 2003, Kallmeyer & Romero 2008]

3. unification based LTAG semantics with frames

[Kallmeyer & Osswald 2013, Kallmeyer & Osswald & Pogodalla 2016]

17

LTAG semantics: overview

Goal: an LTAG architecture of the syntax-semantics interface that

• is compositional→ the meaning of a complex expression can be computed

from the meaning of its subparts and its composition operation.

• pairs entire elementary trees with meaning components

Three principal approaches:

1. LTAG semantics with synchronous TAG (STAG)

[Shieber 1994, Nesson & Shieber 2006, 2008]

2. unification based LTAG semantics with predicate logic

[Kallmeyer & Joshi 2003, Gardent & Kallmeyer 2003, Kallmeyer & Romero 2008]

3. unification based LTAG semantics with frames

[Kallmeyer & Osswald 2013, Kallmeyer & Osswald & Pogodalla 2016]

17

Synchronous TAG (STAG)

Idea:

• pair two TAGs, one for syntax and one for L(ogical) F(orm) (= typed predi-

cate logic),

• and do derivations in parallel.

STAG = two TAGs G1, G2 whose trees are related to each other.

More precisely, it contains pairs ⟨𝛾1, 𝛾2, link⟩ where 𝛾1 is an elementary tree from

G1, 𝛾2 an elementary tree from G2, and link is a set of pairs of node addresses from

𝛾1 and 𝛾2 respectively.

18

Synchronous TAG (STAG)

Idea:

• pair two TAGs, one for syntax and one for L(ogical) F(orm) (= typed predi-

cate logic),

• and do derivations in parallel.

STAG = two TAGs G1, G2 whose trees are related to each other.

More precisely, it contains pairs ⟨𝛾1, 𝛾2, link⟩ where 𝛾1 is an elementary tree from

G1, 𝛾2 an elementary tree from G2, and link is a set of pairs of node addresses from

𝛾1 and 𝛾2 respectively.

18

Synchronous TAG (STAG)

Idea:

• pair two TAGs, one for syntax and one for L(ogical) F(orm) (= typed predi-

cate logic),

• and do derivations in parallel.

STAG = two TAGs G1, G2 whose trees are related to each other.

More precisely, it contains pairs ⟨𝛾1, 𝛾2, link⟩ where 𝛾1 is an elementary tree from

G1, 𝛾2 an elementary tree from G2, and link is a set of pairs of node addresses from

𝛾1 and 𝛾2 respectively.

18

LTAG semantics: STAG〈
S
1

VP
3

V

laughed

NP
2

t
1 , 3

e
2

⟨e, t⟩

laugh

〉

(The links are shown with boxed numbers.)

• The non-terminals of the semantic TAG are types t, e, ⟨e, t⟩,
• The semantic TAG describes the syntactic structure of typed predicate logi-

cal formulas.

• The links in this example tell us, for instance, that the subject NP corre-

sponds to the e argument of laugh.

19

LTAG semantics: STAG

STAG derivation proceeds as in TAG, except that all operations must be paired. In

every derivation step:

• A new elementary tree pair ⟨𝛾1, 𝛾2⟩ is picked.
• 𝛾1 is attached (substituted or adjoined) to the syntactic tree while 𝛾2 is at-

tached to the semantic tree.

• The nodes that the two trees attach to must be linked.

• The link that is used in this derivation step disappears while all other links

involving the attachment sites are inherited by the root of the attaching

tree.

20

LTAG semantics: STAG

S
1

VP
3

V

laughed

NP
2

S
1

VP
3

V

laughed

NP

John

S
1

VP

VP

V

laughed

Adv

sometimes

NP

John

t
1 , 3

e
2

⟨e, t⟩

laugh

t
1 , 3

e

john

⟨e, t⟩

laugh

t
1

t

e

john

⟨e, t⟩

laugh

⟨t, t⟩

sometimes

NP

John

e

john

VP

VP
∗

Adv

sometimes

t

t∗⟨t, t⟩

sometimes

Logical form: sometimes(laugh(john))

21

LTAG semantics: STAG

S
1

VP
3

V

laughed

NP
2

S
1

VP
3

V

laughed

NP

John

S
1

VP

VP

V

laughed

Adv

sometimes

NP

John

t
1 , 3

e
2

⟨e, t⟩

laugh

t
1 , 3

e

john

⟨e, t⟩

laugh

t
1

t

e

john

⟨e, t⟩

laugh

⟨t, t⟩

sometimes

NP

John

e

john

VP

VP
∗

Adv

sometimes

t

t∗⟨t, t⟩

sometimes

Logical form: sometimes(laugh(john))

21

LTAG semantics: STAG

S
1

VP
3

V

laughed

NP
2

S
1

VP
3

V

laughed

NP

John

S
1

VP

VP

V

laughed

Adv

sometimes

NP

John

t
1 , 3

e
2

⟨e, t⟩

laugh

t
1 , 3

e

john

⟨e, t⟩

laugh

t
1

t

e

john

⟨e, t⟩

laugh

⟨t, t⟩

sometimes

NP

John

e

john

VP

VP
∗

Adv

sometimes

t

t∗⟨t, t⟩

sometimes

Logical form: sometimes(laugh(john))

21

LTAG semantics: STAG

S
1

VP
3

V

laughed

NP
2

S
1

VP
3

V

laughed

NP

John

S
1

VP

VP

V

laughed

Adv

sometimes

NP

John

t
1 , 3

e
2

⟨e, t⟩

laugh

t
1 , 3

e

john

⟨e, t⟩

laugh

t
1

t

e

john

⟨e, t⟩

laugh

⟨t, t⟩

sometimes

NP

John

e

john

VP

VP
∗

Adv

sometimes

t

t∗⟨t, t⟩

sometimes

Logical form: sometimes(laugh(john))

21

LTAG semantics: STAG

S
1

VP
3

V

laughed

NP
2

S
1

VP
3

V

laughed

NP

John

S
1

VP

VP

V

laughed

Adv

sometimes

NP

John

t
1 , 3

e
2

⟨e, t⟩

laugh

t
1 , 3

e

john

⟨e, t⟩

laugh

t
1

t

e

john

⟨e, t⟩

laugh

⟨t, t⟩

sometimes

NP

John

e

john

VP

VP
∗

Adv

sometimes

t

t∗⟨t, t⟩

sometimes

Logical form: sometimes(laugh(john))

21

Unification-based LTAG semantics with predicate logic

• syntax-semantics interface for LTAG

• Idea: each elementary tree is paired with

• a set of typed predicate logic expressions and
• a set of scope constraints (i.e., constraints on sub-term relations)

• interface features that characterizes
a) which arguments need to be filled,

b) which elements are available as arguments for other elementary trees and

c) the scope behaviour.

The features are linked to positions in the elementary tree.

22

Unification-based LTAG semantics with predicate logic

NP

[
I=x

]
N

pim

l3 : pim(x)

S

[
...

][
P= 2

]
VP

[
P= 2

][
P=l1

]
V

laughed

NP

[
I= 1

]

l1 : laugh(1)

VP

[
...

][
P=l2

]

VP*

[
P= 4

][
...

]Adv

sometimes

l2 : sometimes(3), 3 ◁∗
4

23

Unification-based LTAG semantics with predicate logic

S

[
...

][
P= 2

]

VP

[
P= 2

][
P=l2

]

VP

[
P= 4

][
P=l1

]
V

laughed

Adv

sometimes

NP

[
I=x

]

N

pim

l1 : laugh(x),
l3 : pim(x),
l2 : sometimes(3),
3 ◁∗

4

24

Unification-based LTAG semantics with predicate logic

S

[
P=l2

]
VP

[
P=l2

]
VP

[
P=l1

]
V

laughed

Adv

sometimes

NP

[
I=x

]
N

pim

l1 : laugh(x),
l3 : pim(x),
l2 : sometimes(3),
3 ◁∗ l1

• 3 ◁∗ l1 signifies that the formula labeled l1 is a subformula of the formula

that has to be placed in the hole 3

• disambiguation leads to pim(x) ∧ sometimes(laugh(x))

25

Unification-based LTAG semantics with frames

• Semantic representations are linked to entire elementary trees (as in the

previous approaches).

• Semantic representations: frames, expressed as typed feature structures.

• Interface features relate nodes in the syntactic tree to nodes in the frame

graph.

• Frame composition by unification, triggered by the unifications on the

interface features that are in turn triggered by substitution, adjunction and

final top-bottom unification on the derived tree.

26

Unification-based LTAG semantics with frames

(4) Pim ate an apple.

NP
[I=z]

pim

z

[
person

name pim

]

S

VP
[I=e]

NP
[I=y]

V

ate

NP
[I=x]

e


eating

actor x

theme y



NP
[I=u]

an apple

u
[
apple

]

27

